Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genome Biol ; 18(1): 8, 2017 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-28115022

RESUMO

BACKGROUND: Organophosphates are the most frequently and largely applied insecticide in the world due to their biodegradable nature. Gut microbes were shown to degrade organophosphates and cause intestinal dysfunction. The diabetogenic nature of organophosphates was recently reported but the underlying molecular mechanism is unclear. We aimed to understand the role of gut microbiota in organophosphate-induced hyperglycemia and to unravel the molecular mechanism behind this process. RESULTS: Here we demonstrate a high prevalence of diabetes among people directly exposed to organophosphates in rural India (n = 3080). Correlation and linear regression analysis reveal a strong association between plasma organophosphate residues and HbA1c but no association with acetylcholine esterase was noticed. Chronic treatment of mice with organophosphate for 180 days confirms the induction of glucose intolerance with no significant change in acetylcholine esterase. Further fecal transplantation and culture transplantation experiments confirm the involvement of gut microbiota in organophosphate-induced glucose intolerance. Intestinal metatranscriptomic and host metabolomic analyses reveal that gut microbial organophosphate degradation produces short chain fatty acids like acetic acid, which induces gluconeogenesis and thereby accounts for glucose intolerance. Plasma organophosphate residues are positively correlated with fecal esterase activity and acetate level of human diabetes. CONCLUSION: Collectively, our results implicate gluconeogenesis as the key mechanism behind organophosphate-induced hyperglycemia, mediated by the organophosphate-degrading potential of gut microbiota. This study reveals the gut microbiome-mediated diabetogenic nature of organophosphates and hence that the usage of these insecticides should be reconsidered.


Assuntos
Microbioma Gastrointestinal , Gluconeogênese , Intolerância à Glucose , Inseticidas/metabolismo , Organofosfatos/metabolismo , Ácido Acético/metabolismo , Animais , Biomarcadores , Glicemia , Diabetes Mellitus/etiologia , Diabetes Mellitus/metabolismo , Modelos Animais de Doenças , Fezes/química , Fezes/enzimologia , Gluconeogênese/efeitos dos fármacos , Intolerância à Glucose/tratamento farmacológico , Teste de Tolerância a Glucose , Humanos , Hiperglicemia/sangue , Hiperglicemia/etiologia , Hiperglicemia/metabolismo , Inseticidas/toxicidade , Camundongos , Organofosfatos/toxicidade , Estresse Oxidativo
2.
Heart Lung Circ ; 25(10): 1013-20, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27067666

RESUMO

BACKGROUND: The discovery of PIWI-interacting RNAs (piRNAs) has fundamentally changed our understanding of post transcriptional regulation of transposons and other genes. Unlike miRNA and siRNA, the piRNAs are the most abundant but least studied RNA species in mammals. Although the expression of PIWI proteins and piRNAs has long been regarded as germline specific, increasing evidences suggest the expression of piRNAs in somatic cells. METHODS: In this study, the small RNA sequencing executed during induction of cardiac hypertrophy in both in vivo and in vitro conditions were annotated for the expression of piRNAs. The expression of piRNAs was validated by qPCR and RNA immunoprecipitation. In addition, the presence of piRNAs in circulation of myocardial infarction patients was studied by qPCR. RESULTS: We identified an abundant and altered expression of piRNAs during cardiac hypertrophy. The differentially expressed piRNAs was validated by qPCR and RNA immunoprecipitation. The significantly and differentially expressed piRNAs were predicted to target different retrotransposons and mRNAs in the rat genome. The detection of specific piRNA in serum of myocardial infarction patients suggests the potential of piRNA for diagnosis. CONCLUSION: Overall this study is the first to provide a whole-genome analysis of the large repertoire of piRNAs in the cardiac system and this would pave a new path to understanding the molecular aetiology of piRNA and retrotransposons in the physiology and pathology of the cardiac system.


Assuntos
Cardiomegalia/metabolismo , Regulação da Expressão Gênica , RNA Interferente Pequeno/biossíntese , Animais , Estudo de Associação Genômica Ampla , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...